Exercise 18

In Exercises 15-20, you are asked to solve the wave equation (1) subject to the boundary conditions (3), (4), and the initial conditions (5), (6), for the given data. [Hint: Use (10) and the remark that follows it.]

$$
f(x)=0, \quad g(x)=\sin \frac{\pi x}{L}
$$

Solution

The general solution to the wave equation on a finite interval with fixed ends and zero shape and arbitrary initial velocity,

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L,-\infty<t<\infty \\
& u(x, 0)=0 \\
& \frac{\partial u}{\partial t}(x, 0)=\sin \frac{\pi x}{L} \\
& u(0, t)=0 \\
& u(L, t)=0,
\end{aligned}
$$

is (to be derived in later chapters)

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{n \pi c t}{L} .
$$

Start by differentiating u with respect to t.

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =\frac{\partial}{\partial t} \sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{n \pi c t}{L} \\
& =\sum_{n=1}^{\infty} \frac{\partial}{\partial t}\left(B_{n} \sin \frac{n \pi x}{L} \sin \frac{n \pi c t}{L}\right) \\
& =\sum_{n=1}^{\infty} \frac{n \pi c}{L} B_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi c t}{L}
\end{aligned}
$$

To determine the constants B_{n}, set $t=0$ and substitute the given function for $\frac{\partial u}{\partial t}(x, 0)$.

$$
\begin{aligned}
\frac{\partial u}{\partial t}(x, 0) & =\sum_{n=1}^{\infty} \frac{n \pi c}{L} B_{n} \sin \frac{n \pi x}{L} \\
\sin \frac{\pi x}{L} & =\frac{\pi c}{L} B_{1} \sin \frac{\pi x}{L}+\frac{2 \pi c}{L} B_{2} \sin \frac{2 \pi x}{L}+\frac{3 \pi c}{L} B_{3} \sin \frac{3 \pi x}{L}+\cdots
\end{aligned}
$$

Then match the coefficients on both sides.

$$
\begin{aligned}
\frac{\pi c}{L} B_{1} & =1 \quad \rightarrow \quad B_{1}=\frac{L}{\pi c} \\
\frac{2 \pi c}{L} B_{2} & =0 \\
\vdots & \\
\frac{n \pi c}{L} B_{n} & =0, \quad n \neq 1
\end{aligned}
$$

Therefore, the general solution that satisfies the initial conditions is

$$
\begin{aligned}
u(x, t) & =B_{1} \sin \frac{\pi x}{L} \sin \frac{\pi c t}{L} \\
& =\frac{L}{\pi c} \sin \frac{\pi x}{L} \sin \frac{\pi c t}{L} .
\end{aligned}
$$

